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Abstract. A simple refined discrete-layer theory of anisotropic laminated composite plates is substantiated. The
theory is based on the assumption of a piecewise linear variation of the in-plane displacement components and of
the constancy of the transverse displacement throughout the thickness of the laminate. This plate model
incorporates transverse shear deformation, dynamic and thermal effects as well as the geometrical non-linearities
and fulfills the continuity conditions for the displacement components and transverse shear stresses at the interfaces
between laminae. As it is shown in the paper, the refinement implying the fulfillment of continuity conditions is not
accompanied by an increase of the number of independent unknown functions, as implied in the standard first order
transverse shear deformation theory. It is also shown that the within the framework of the linearized static
counterpart of the theory, several theorems analogous to the ones in the 3-D elasticity theory could be established.
These concern the energetic theorems, Betti's reciprocity theorem, the uniqueness theorem for the solutions of
boundary-value problems of elastic composite plates, etc. Finally, comparative remarks on the present and standard
first order transverse shear deformation theories are made and pertinent conclusions about its usefulness and further
developments are outlined.

1. Introduction

The increased use of advanced composite material systems in various fields of modern
technology has stimulated a great deal of interest for the modelling of multilayered
composite structures. This interest is caused by the increased amount of publications dealing
with the substantiation of refined theories of anisotropic composite plates and shells and by
the appearance of several comprehensive survey-papers in the literature [1-4] analyzing in
depth the state-of-the-art of the problem.

As it was clearly emphasized: (i) the low stiffness rigidities in transverse shear characteriz-
ing these advanced composite material structures, (ii) the drastic variations of transverse
shear moduli from layer to layer, (iii) the various damage modes which are susceptible to
appear in anisotropic laminated composite structures and (iv) the wide use of non-thin
walled composite structures constitute strong arguments towards the implementation and use
of refined plate (or shell) models. Such refined structural models have to incorporate
transverse shear deformation as well as other effects deciding upon the reliable prediction of
the response characteristics. In this sense the extended and refined versions [5-9] of the
originally Reissner-Boll6-Mindlin and Yang-Norris-Stavsky first order shear deformation
plate theories (FSDT) represent promising avenues towards the fulfillment of this goal.

Other refinements of the theory of laminated composite plates (and shells) have been
obtained within the discrete-layer model based on a piecewise linear representation of the
in-plane displacement field through the thickness (see e.g. [2, 10-14]). Although the
numerical results reveal (see [4, 9, 14, 15]) that the global response characteristics as
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predicted by this model are very accurate, the number of unknowns and, as a result, the
computational complexities, increase greatly with the increase of the number of constituent
layers. In addition to this shortcoming, the requirement of continuity of transverse shear
stresses at the layer interfaces is violated. Within the discrete-layer model, the continuity
requirements of transverse shear stresses at the interlaminar interfaces have been fulfilled in
[16-24] for plates and shells and in [25] for beam-type structures.

Such a model is appropriate towards the prediction, for example, of the impact damage or
the failure characteristics of postbuckled (mechanical and thermal) composite laminates. In
these instances, both the inter- and the intra-lamina response characteristics of composite flat
panels have to be accurately determined.

In the majority of cases the assessment of the degree of accuracy of the developed
theoretical models is achieved by comparing numerically the obtained response characteris-
tics with their counterparts based (when available) on the 3-D elasticity theory.

Another way of assessing the validity of the 2-D plate (or shell) model is to make evident
that, within the respective model, analogous theorems to the ones featured by the 3-D
elasticity theory could be established. In addition to the validation of the 2-D structural
model, such theorems (e.g. the energetic or the reciprocal ones) have an intrinsic value
providing a tool towards the solution of practical problems of the theory of plates (and
shells) in general and of the composite ones in particular. It should also be mentioned that by
using the former way of validation, a number of comparisons with the available exact
numerical results based on the 3-D elasticity theory were done in [19], and the excellent
performances of this model were emphasized.

The present paper attempts: i) to generalize and bring new elements in the refined theory
of laminated composite anisotropic plates within the assumptions prompted in [18-20] and
ii) to establish, within the developed linearized plate theory, analogous theorems to the ones
existing in the 3-D elasticity theory. Such a theory characterized by the same number of
unknown functions as the FSDT but exhibiting (due to the fulfillment of the interlaminae
static continuity conditions) a higher order system of governing equations (i.e., a twelfth
order one), may be viewed as a generalization of the standard FSDT. The theory also
incorporates the geometrical non-linearities considered in the sense of the von Kirmdn small
strain and moderate rotation concept, as well as the dynamic effects.

Preliminaries

Consider a composite laminated plate consisting of a finite number of linearly elastic
anisotropic layers, each of them exhibiting individual physico-mechanical properties. It is
assumed that the layers are in perfect bond so that no slip between the adjacent laminae may
occur. The (constant) thickness of the kth lamina is denoted by h(k) (k = 1,..., N), the total
plate thickness is denoted by h while N is the total number of layers.

For the sake of convenience we choose the underformed mid-plane of the bottom layer as
the reference plane ar (see Fig. 1). Let x', i = 1, 2, 3 be the coordinate system to which the
points of the plate structure will be referred. It consists of the set of curvilinear in-plane
coordinates x0 , a = 1, 2, on or, and the coordinate X3 normal to a. The distance (along X3 )

between the reference plane and the underformed mid-plane of the kth layer is denoted by
(k)Z, with ()Z - 0, while (k)Z+ and (k)Z- denote the upper and bottom faces of the kth
layer, respectively (see Fig. 1). Let r be the volume of the plate in the underformed
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Fig. 1. Geometry of the laminated composite plate.

(reference) configuration. By S+ and S- we denote the upper and bottom planes of the
plate. Let B denote the lateral boundary surface of T generated by the normals to o along its
boundary curve C (with arc length s). By Bf and BV(B = Bf U B,, Bf n B, = 0) we denote the
two parts of B, where stresses and displacements, respectively, are prescribed.

The components of the metric tensor of the undeformed reference plane ao are

a,, =a, a., a,, 3 = a a 3 = 0, a3 3 =a 3 a 3 = 1,

aP a aa aa3 =aa a3 = a3 = 0, (1)a3 =3 a3. a3

where ai and a', respectively, denote the covariant and contravariant base vectors of o- with
a3 = a3

= n. For the base vectors and metric tensor components in the undeformed 3-D space
we have

gi a , gi ai , gij aij, g" = aJ. (2)

Associated with the boundary curve C of cr we define the unit tangent and outward normal
vectors and v, respectively, by

= aa ; v = v aa = T X n . (3)

Partial differentiation will be denoted by a comma, (...), = (...)/ax', while the
notation ( )la stands for covariant differentiation with respect to x 0. It is mentioned that,
for the case of flat plates, by virtue of equations (1) and (2), there is no distinction between
space and surface covariant differentiations in and on o-, respectively. Throughout the
paper the Einsteinian summation convention will be used, with Latin indices ranging from 1
to 3 and Greek indices ranging from 1 to 2. Superscript (k) placed in brackets on the right
(or left) of any quantity identifies its affiliation to the kth layer.

Geometric equations

Consider the displacement vector V(x, x 3 , t) of the 3-D points of the composite plate
expressed as:

(2)
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V= Va +V 3a', (4)

where V V(x',x 3 , t) and V3 V3(x', X3 , t). In order to fulfill the static continuity
conditions (associated with the transverse shear stresses) and, at the same time, to obtain the
simplest as possible system of governing equations, the following representation for the
displacement components is postulated [18-20]:

N-1

(a(xw, X3, t) = Ua + X3c + E [X3 - (+]()Y( - (IZ+) , (5a)

(k)V3(x, X
3
, t)= =V3. (5b)

In equations (5) v(=uv(x ', t)) and v 3 (=v 3 (X
w
, t)) denote the displacements of a point of the

reference plane of the plate (defined by x3 = 0); ¢ (ia(x ' , t)) denote the rotations of the
normal to the reference plane; ()Q(=(l)Q(x,t)) are functions which have to be de-
termined from the continuity conditions of the transverse shear stresses, i.e.,

S3X13=(k)Z+ = S 3 I3=(k+1)z- , (6)

where S" denotes the second Piola-Kirchhoff stress tensor, while Y(-) denotes the Heaviside
step distribution. It may be remarked that the displacement components (k)V. and (k)V3 are
continuous functions of X3 irrespective of the values of (o)fl.

Consistent with the representation of displacement components, equation (5), and in
conjunction with the Lagrangian strain-displacement relationship used in the spirit of von
Karman partially non-linear theory [26]

(k)E = ((k)V j + (k)Vi + (k)V3 (k) (7)

the non-vanishing strain components result as:

(k)E = (k)%p + x3(k)ea , (8a)

(k)E3 = (k)ea3 (8b)

where eij ei(x', t).
In equation (8) the 2-D strain measures eij are expressed as:

k-1

2(k)eo = Vl + V 1a + V31aV3P E ()z+(( 1 + q()l) , (9a)
/=1

k-I

2(k)e = ±~3 + Cla + (+( )QF/ + ('t31a) (9b)

k-1

2(k) e3 = + 3l + (1)n a (9c)

It should be remarked that both the representation of the displacement field (5) and the
obtained strain measures (9) could be viewed as the superposition of a part which is similar
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to the one characterizing the standard FSDT and of another part exhibiting a piecewise
variation from layer to layer. This latter part is associated with the functions ()Qn.

Using the conventional linear relation between the second Piola-Kirchhoff stress and
Lagrangian strain tensor components [27], it may be shown that fulfillment of the condition
(6) yields for (k)If the expression:

(k)l = (k) (u3o + q,) , (10)

where

(k)y-_ 4(1)E 83
°

3
((k+ )F3a3 (k)Fp3 3) (11)

Here and in the following developments Eijm n and Fijmn denote the tensors of elastic moduli
and its compliance counterpart, respectively, associated with a medium exhibiting elastic
symmetry with respect to 3 = 0. Equations (10) and (11) reveal that:

(i) The transverse shear elastic constants are involved, via equations (10) and (11), in the
in-plane displacement quantities and the 2-D strain measures as expressed by equations
(5a) and (9), respectively.

(ii) There is a need to apply the present theory whenever the constituent material layers
exhibit drastic variations in their transverse shear mechanical properties. Otherwise, if
the jump of transverse shear moduli from layer to layer is mild enough, the standard
FSDT could be applied. As a result, (k)yA given by equation (11) could play the role of
a test quantity. Depending on its magnitudes, a decision could be made as to whether or
not the standard FSDT or its present refined counterpart is advisable to be applied.

(iii) Under the Kirchhoff's hypothesis (implying tJ'a = -v31) it results (k)a 0. This entails
the conclusion that within the classical plate theory, the refinement brought by the
fulfillment of transverse shear stress continuity is redundant.

Equations (5), (9), (10) and (11) show that the present theory is described in terms of the
same unknown functions Va, v3 and Ha as the ones characterizing the usual first order
transverse shear deformation theory (FSDT) of composite laminated panels. This fact
certainly constitutes an important advantage over those refined plate theories where the
number of unknowns is dependent upon the number of constituent layers.

Equations of motion and boundary conditions

In order to derive the equations of motion and boundary conditions of composite laminated
plates, Hamilton's variational principle of the 3-D elasticity theory will be used. It is
expressed in the form [26]:

f, dt[ S"j BEi dT -SK- S SVi dA - poH 8VI d] =O . (12)

In equation (12), K denotes the kinetic energy of the body; p0 denotes the mass density of
the layer materials; H(-Hia i) denotes the vector of body forces per unit mass of undeformed
body; Si denotes the components of the stress vector prescribed over the undeformed
external boundary A, t and t denote two arbitrary instances of time, where, according to
Hamilton's principle, the end conditions are:
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V =0 for t=to and t=t1 .

In equation (12) we express

1
E = 2 (8Vi i + Vjl i + V + V3i V j V3li), (13a)

I SKdt= -I fdt I pOV Vi dr . (13b)

In addition, equations (5) and (6) are used and Green's theorem is applied whenever
possible. Considering the variations gv,, 8v3 and fr¢ as independent and arbitrary, by virtue
of the stationary character of the functional (which concerns each instant belonging to the
interval [to, t]), the following results are obtained:

(a) The equations of motion

The equations of motion take the following form:

bra: LaP, +a + Fa _ a = 0 (14a)
0 0 0 0

8v3: Qlo + apV31 )I + F3 -I3 =0, (14b)

: LoI, _ P + - I' = 0 (14c)

In equations (14), the gross stress resultants and stress couples are defined by:

N

P - (k La , n = 0,1 (s15a)
k=l

Q= { 3 k- + 1 [(k) A3 + (I)z+(k)LA _ (k)jAy (/)y} ,(b)

Q,8= L_~3 q- E L q L- L_ A~' (1b)
k=1 1=1

where

{(k) a3, (k)a} = fh (k)S(l x3) dx3' (16a)
h (k)

(k)a3 = fh (k)Sa3 dx3
. (16b)

Here the integration is being performed over the thickness of each kth layer implying

fhk () dx 3 f(k)z+ ) dx

h -(k) dk)Z -

In connection with the equations of motion (14), an alternative derivation based on a
vectorial approach was suggested in [28].
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(b) The inertia terms

The inertia terms occurring in equations (14) are given by:

1 r a ~' (k),
Ia = .r wa,·~ E~, (17a)

r=O k=l

03 = 03 [(k)rl (
k
)Z(k) ](1)Y A (17b)

k=l r=0 k=l l=1

1 1 r N r+l r N k1 r+1 r 1
Ia E W (k) M+ WAE rE'" - ' (17c)

r=O k=l k=l =1

Here

0 k-I

Wa = u-a (E)+(t + u&3 (18a)
1=1

1 k-1

W =a +aaI ( + l)( + (18b)

while the mass terms are defined as:

M p(X3)4 dX3, (r=. . . 2). (19)

(c) The resultant surface load couples

In equations (14), a, 3, a denote the surface load couples (or order zero and one). From
Hamilton's principle they result as:

k N-1
0 3 S+ [ 3 P33S+ - a[p3] + , ((N)z_ ( ))] | (20a)

[[%JS lC]S~ 1=1

N-1
1a =[p

3
a] (N)+ - [

3
a]_( )Z- + [py ]S+ ((N)+ )Z , (20b)

/=i

where p3a and P33 denote the prescribed first Piola-Kirchhoff stress tensor components.

(d) The body force terms

In addition, the gross body forces intervening in equations (14) are:

F- = (k)Fa , (21a)
k=1

FP - [- (OFr - , (21b)
l=1 k=1 1=1

413



414 R. Schmidt and L. Librescu

e (k) E ((k) )+) °F A - k (1) (21c)
k=1 k=l 1=1

where

(=)Fa = pHa'(x 3 )n dx3 n = O, 1, (22a)

(k)03 = f pH 3 dx3 . (22b)

(e) Boundary conditions (BCs) on C

From the line integral arising in equation (12) we obtain the static and geometric BCs on Cf
and C., respectively (where C = Cf U C, Cf n C, = 0). These are:

o o
bv~: L BvavP =Lvvav , (23a)

bv: L'i-Tv =La , vr , (23b)

Bv3: [Q' +L V3la]v + (Ka ) + R)v+ v]-3 (23c), as P Iv , as(23c)

B(aw3/dv): Kvav = (23d)

84,: (LaB - Ka')V, v = (L' Ka )v. , (23e)

84: (L"' - K )TaVP = (L
" - K ),v . (23f)

and at all corner points of Cf located at s = s i, i = 1, 2,....

8v3(s,): (K%-aV,)IsiC = (K tvi)lsi-o . (23g)

In equations (23) v(=vaaa) and T(=-Taaa) denote the outward normal and tangential unit
vectors to C, respectively, while

jLa3 = (k) L ,. n= 0,1 (24a)
k=l

N

LB = . (k) L , (24b)
k=1

N k-1

KapB = (()Z+(k (k)lA (l) ()A)()y (24c)
k=l 1=1

O3 = r ;WA [(k)M _ (I)Z+(k)lM]()y1 (24d)
r=O k=l 1=1
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P k - ((k)FA - (l)z+(k)FA)(l)yPA (24e)
k=l =1

with

{(k) op L (k))= fh (k)P1i9( 1, x3 ) dx3 (24f)

(k)L3P = f (k)p33 dx3 (24g)
h(k)

The geometric BCs on C, are given by:

VU = UV; VT = VU; v3 = 3 ; aU3/Iv = U3/1v ;

J = /; T = o (25a)-(25f)

In equations (23) and (25), the undertilted quantities denote prescribed quantities.
Consistent with the number of six boundary conditions which have to be prescribed at

each edge of the plate, the associated governing equations are of twelfth order, i.e., two
orders higher than the order of the standard first order transverse shear deformation theory.
This means that the fulfillment of the static conditions between the adjacent layers is paid by
an increase of the order of the governing equations. This shows again that the present theory
represents a refinement of the standard FSDT.

Constitutive equations

The material of each constituent layer is assumed homogeneous and anisotropic, the
anisotropy being of the symmetry type with respect to the plane x3 = 0. In this case the
material is termed monoclinic. For the geometrically non-linear theory (but physically linear
one), a linear relationship between the second Piola-Kirchhoff stress and Lagrangian strain
tensors could be established [27]. Assuming also the existence of a non-uniform (but
stationary) temperature field T(-T(x,,x 3 ) and postulating that the elastic properties are
temperature independent, this relationship is [26]:

(k)S0
3

= (k) E I3 °
WP (k)E + (k) A 3 T , (26a)

(k)Sa
3

= 2 (k)Ea3w
3

(k)E 3 , (26b)

where

E a 3 3E 3 3
w
p

~E* P =p E a wp 3 3 33 (26c)

and

E a,
3 3

EAs = A'l1- A,33 (26d)
E33A3

415
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denote the modified elastic and thermal expansion coefficients, respectively [26]. Substitution
of equations (26) into (16) yields the constitutive equations

(k)L a = (k)B f 3 ~P (k)~ + (k)B 3'P (k)e p + (k) 90
- A (27a)

(k)L - (k)B 43op (k)eo + k)B 3p (k)e op + Ik) , (27b)

(k) a3 = K
2 a3 3

(kk)o (27c)

where

{(k)B4P 1k)a°P 2 k)Bga°p} = I (k)Ea°P[l, x3 , (x3)2] dx3 , (27d)
h(k)

denote the stretching, coupling bending-stretching and the bending rigidities, respectively,
while

{o 0. , i"'lT[IY } [,x] X(27e)
fh(k)(k) T[x 3 ] dx3

denote the thermal stress resultants and stress couples associated with a kth layer,
respectively. In addition

(k) a3w3 = (k)Ea3w3 dx 3 (28)

h(k)

defines the transverse shear rigidities while K 2 denotes a transverse shear correction factor.
As is well known, the values for K 2 = 5/6, 7r 2/12 or 2/3 advanced in the literature by
Reissner, Mindlin and Uflyand, respectively, and determined on various criteria are
appropriate for a single-layered plate/shell. For a composite laminated plate K 2 becomes a
solution dependent parameter. For the present case, however, as it will be shown later, there
is a fixed criterium of selecting the proper value of K 2 .

It may easily be shown that the following symmetry relations are valid:

(k)Ba 3pP = (k)BWpa- = (k)B 3 aoP =-- (k)B'P (n = 0,. . . ,2) (29)

(k)Ba3 o3 (k)B3a3 and (k)-c, = (k)-a (n = 0,1)

In the case of symmetric laminated plates (i.e., when the plate exhibits geometric, elastic
and thermal symmetry properties throughout its thickness), the reference plane could be
chosen to coincide with the mid-plane of the structure. Moreover, it may easily be verified
that for symmetrically laminated plates, the linearized equations and boundary conditions
split exactly and entirely into two groups, belong to bending and stretching states of stress,
respectively. For such a case, the governing equations associated with bending and stretching
result in eighth and fourth order systems of equations, respectively.

The disparity in their order reveals that the refinements of the present theory involve the
bending theory only.
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Several remarks on the formulation of the geometrically non-linear theory of composite
plates

In the general case of anisotropic composite plates, the problem could be formulated in
terms of the five displacement functions ua, u3 and qi,. To this end, the five equations of
motion (14) have to be expressed in terms of the displacement quantities by adequately using
the constitutive and strain-displacement equations. However, in some problems, for
example, the buckling and postbuckling ones, it is advisable to use other formulation. In the
spirit of this formulation, the homogeneous counterpart of (14a), i.e.,

L |[= (k)L as =J -0 (30)

could identically be fulfilled by expressing L'p (or (k)La) as:

L P = E A CIA or (k )La = eaAEW(k)CIl (31)

wherefrom it results that

N

c(x t)= Z (k)C(x, t), t). (32)
k=l

In equation (31) ea' denotes the 2-D permutation tensor. Being identically satisfied by (31),
equations of equilibrium (14a) have to be replaced by the compatibility equations (associated
with the in-plane strains) which constitute a part of the equations to be fulfilled. Elimination
of v in equation (9a) yields the compatibility equation as:

EalT1 3 [EA (k)Oa +2 (1)41 )ufiIw +4 + (1')afWaioV k=l,..., N

(33)

On the other hand, partial inversion of constitutive equations (27a) yields:

(k)o= (k)S [(k) oJp (k)p (e A o] (34a)
er0 0 L 1w)Bwpa)e - (34a)

where (k)Safp plays the role of the inverse of (k)Ba""a in the sense of

(k)S (k)a3A = ( A + 6 A) (34b)
0 cop 0 2 2p p 

Employment of (27b,c), (34) and (31) in equations (14b,c) and (33) yields the required
system of four coupled governing equations in terms of four unknown functions, C, u3 and
¢tP. Its linearized counterpart decouples yielding an eighth order PDES in terms of u3 and qdl,
governing the bending and one equation of the fourth order in terms of C, governing the
stretching.

Several theorems of the linearized static theory of composite laminated plates

In several earlier works it was shown that most of the general theorems of 3-D linear theory
of elastostatics have analogues in the theory of plates and shells (see [26, 29] for classical and

417
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[11, 12, 30] for refined shell theories). Within the present work it will be shown that the static
counterpart of the linearized theory developed here is characterized by the same feature. To
this end several energy relations associated with this theory will be displayed.

Virtual work principle (VWP)

As in the 3-D elastostatics, in this case, the VWP can be formulated in the usual way as:

BA = U (35)

where

A= f [(p + F) 8v + (3 + F3 ) Gv3 + (a + Fa) 814a] do-

+I (e Lr 8,a v +Laa i L + N 3+M 3)) ds + E [K3TallSi+ gU3(si)+fJCf \ j3 ~ V3 ~ [ si-O

(36)

denotes the mechanical work performed by the external and body forces and the edge loads
through the virtual displacements, N and M are given by the right-hand sides of equations
(23c,d), respectively, and

U = f 2 {(k)La35(k)e, + (k)Lc835(k)e + 2(k)La3 5(k)e } do, (37)

represents the internal virtual work where 8(k)e,/ (k)e, (k) 3 are related to the virtual
displacements vua, Bv3 and b84a by the linearized counterpart of equation (9). The strain
energy function per unit area of the reference plane is defined as:

W= , f W(k) dx3 (38)
k=1 (k)

where

W(k) = l(k)kE atP( (k) (k)X3((k) (k)e (k)ewp (k)a)
P eap +X epe + eX ase(

+ (X
3
)
2

(k)e (k)e) + 2(k)Ea3 3K2(k) 3a3 k)3

+ (k)A"P((k)Oa + X3(k)a,) T. (39)

Furthermore, the strain energy associated with a kth layer is

W(k) I (k W(k) d3 1[(k)Bap°P (k)O (k)0 + (k) p((k) ep + (k)1 (k)O

k) apP1 (k) 2
+ 2 B (k) (k)p] + 2K (k)Ba3w3 (k)e (k)O + I [(k)a13 (k)a + k)l-ap (k)l 

(40)
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while the total strain energy stored in the structure is:

f N

U=f I l WE(k)d (41)
k=l

Theorem of work and energy (Clapeyron's theorem)

Considering in equations (40) and (41) instead of the virtual displacements Bv,, av,, , the
displacements corresponding to the elastic state produced by an external force system, we
obtain

f [(pa + F)VU + ( 3 + F3)v + (pa + F~)4] do

+ L'Pvv + L9V~A41 + Nv 3 + M ds + [KPTv 3() = U (42)f, v "i,'.9 ,]vsij,_o V3(Si) = 2. (42)

where the left-hand side of this equation expresses the work done by the external forces and
prescribed edge loadings (for the sake of brevity the undertildes were suppressed).

In terms of this theorem this work is equal to twice the strain energy stored in the
structure.

Betti's reciprocal theorem

According to this theorem, for the same composite plate subjected to two force and
temperature field systems identified, respectively, by one and two overtildes, the work done
by the first force system over the displacements due to the second one, is equal to the work
done by the second force system over the displacements due to the first one. By virtue of
equation (35) and of the symmetries (29), having in view that:

[(k )gfoo (k) (k)8 + (k)Ba3p((k)
0

.(k)l + (k) I (k) )
0 )B0 eat3 p 1 e,, + B-- e eP e1, eP

(k)Bai3p (k)4 (k) + 2Kk)Ba (k) (k) 

[(k)Baop (k)8 (k) (k (k) (k) +k) k)% , (k)3 

z B ~' ~ (k)z -3(i)
+ 3 Ik)BaIkP (k) S (ka + 2K

2 k)Ba 3 I 3
(k)8 (k) '31 ,

=((k)jfa (k). + k)) s_ (0) k). +1 ~ e), ) (43)

in conjunction with equation (36) one obtains:

0 Xaj3 3aj3(i)

+ [La +p u, + P l~ I dcr, 3+ e () + 1 s+ e a) da

= [pV +P 3 + P .]do- - f ( e + e,1 
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L VV + L + Nv 3+ M 3- ds + [K rT.alV.s+o 3(s,) (44)

which proves the theorem. In equation (44)

N

n -al = E (k).-r (n = 0, 1) .
k=l

Uniqueness of solution

Let v,, v3, 4a, ea, ear3, ea3, L t L La3 be a system of functions characterizing the state
of stress and strain in a laminated composite anisotropic plate. These functions are
determined by the solution of the linearized counterpart of equations (9), (14), and (27) for
given boundary conditions (23) and (25). In order to investigate the uniqueness problem we
assume that for given boundary conditions there exist two sets of solutions identified by ((A))
and ((B)), respectively. By virtue of the linear character of field equations, the system of
functions characterizing the difference solution (identified by the superscript (d)) satisfies the
constitutive equations under the form where the thermal terms disappear, the geometrical
equations, the homogeneous equations of equilibrium, as well as the homogeneous boundary

(d)

conditions. Transposing (42) for the difference solution we obtain that U = 0, implying that

(ea , ea 3) = 0.
It may be concluded from this that

p0 1 0 )A= (0 1 0 '(B)

(ear, ear, e a3)(A) (ea, e, ea3)

and on the basis of (27) it results

0 1 0 1 0
(LaP Lap, L 3 )(A) = (Lap Lap, L 3 )(B)

that both solutions give the same state of stresses and strain. In the case of the boundary
conditions expressed in terms of stress resultants, the previous result does not imply that
[va, v3, Ca]d =0. In this case the solutions [v., 3,q f](A) and [a, v3, a](B) may differ by a

rigid-body displacement which has no effect on the state of stress or strain of the composite
plate.

Minimum potential (MPE) and complementary energy (MCE) principles

MPE states that of all the kinematical admissible displacement fields v', v3, B4a, the actual
one yields the absolute minimum of the potential energy functional. To this end we define
the functional

S= L E W(k) da - [( + a)V + ( 3 + )
k=l

..1 _ (3 a 1 + Nv 3 + Ma

+ (pa do Fa)q, - L + + 3 + M ds

- Z [KT P]S i+O V3(si) (45)L1 L" 'aYB~~~~~~~~si-o U3~(45)
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where (k) is given by (40).
Let us express the kinematical admissible displacement field (v', u3, ¢'fv) in terms of its

actual counterpart (Va, v3, i a) as

Va = a a; V3 = 3 +v 3 ; a = + k (46)

where va, v3 and &8. are zero on C. Then, for the difference between the potential
energies V' and F corresponding to the kinematically admissible and the actual displacement
fields, respectively, we have:

J [ Wk)w((k)% +6 ()ek ; (k)ep +8(k) ; (k)% + (k) 3k=l

(k)((k), (k)e, (k)
0

ep, eap, e 3 ) do

- f(L-a bv,3 + L a 8iB + N V3 + Ms (V)) ds

-- [KaP_ ']si O BV3(Si) . (47)

Expanding W' into a power series we have

1
W1 = fW + 8W + / 52 W, (48)

where

VVWk) 6(k) (k) e + (k)a3, (49)(49)
8 (k~eap 6'L'2·,, /5 ( e,,

while

152W(k =[(k)Baf S() = + [(k)Ba p(k)o (kP (k)e

+ /5 (k) (k)p a) + )B a P e(k) 
1

35(k), + 2K
2

(k)Ba
3

38 3(k)3 8 (k)w31

_ W(k)(5(k)% 5(k), 8 (k)O 

Invoking the virtual work principle, we obtain

_ = N (e(k)~ai, 8 (k)a,5(k)ea 3 )do. (51)
' k=l

If lW(k)(68 (k)ap, , , (k)ea3) is positive definite, it results that

' - 0 (52)

for ( (k)ap, 8 (k)ea, (kea3 ) 0, and therefore is a minimum.
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Minimum complementary energy principle

0 1
the MCE principle states that of all statistically admissible stress fields (i.e., L", LaP and
La3 ), the actual one renders a minimum of the complementary energy functional Wc, defined
as:

=I LE () do-I+ L pvavy L+ a +Nv3 + +M )VJ ds (53)

where the complementary energy function E is related to W through a Legendre transforma-
tion, as:

,(k ((k)L p (k)Iap, (k) a3) = (k)Lap (k)

+(k)Lap (k)e + (k) a3 (k)0 _ (k)V((k)(e, (k)5, (k)e ) (54)

As in the case of MPE principle (see also [24]), it could be shown that (53) assumes its
absolute minimum for the actual solution and in addition that ()min = -(WC)mi We
mention in passing that these energetic principles constitute as basis, among others, of many
approximate numerical solution schemes, the most popular one being the finite-element
method.

Discussion

The previous developments concern the substantiation of a shear deformable theory of
anisotropic composite laminated plates based upon the fulfillment of both geometrical and
statical continuity conditions between the adjacent layers. It incorporates dynamic and
thermal effects as well as the geometric non-linearities. Similarly to, the first order transverse
shear deformation theory (FSDT) of unsymmetric laminated plates, this theory involves
determination of five independent unknown functions, only. However, in contrast to the
standard FSDT resulting in a tenth order governing equation system, in this case the order of
governing equations is twelve, which implies prescription of six boundary conditions at each
edge. As it results from the paper, the incorporation of the extra-refinement consisting of the
fulfillment of the static continuity conditions at the layer interfaces becomes necessary in the
case of advanced composite material structures when drastic variations in the transverse
shear properties are experienced from layer to layer. In contrast to other available
approaches, in the present one there is a possibility to evaluate, depending on the values of
(k)y., if there is a real necessity to introduce this refinement (and so to increase the order of
the governing equations), or to use the standard FSDT.

In any case, for hybrid composite structures whose material layers may feature drastic
variations in the transverse shear moduli and for sandwich structures constituted by thin
layers (for which, theoretically, the transverse shear rigidity is infinite), separated by thick
layers (which are characterized by low rigidities in transverse shear), the use of such a theory
is essential.

After the deduction of the basic equations and boundary conditions, it was shown that
several theorems of the linear theory of 3-D elastostatics find their analogues in the theory of
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composite plates developed in this paper. Related to the necessity of prescribing the global
transverse shear correction factor, the following comments are in order. As is well known, in
the theory of laminated composite plates (and shells) transverse shear correction factors are
lamination [31, 32] and temperature [33] dependent quantities. It is also known [34] that for
a single-layered plate (even when a temperature field is present [30]) K2 = 5/6 is an exact
shear-correction factor. In the present case, due to the fulfillment of the continuity of
transverse shear stresses at the layer interfaces they result constant throughout the entire
laminated thickness and, consequently, likewise in the case of a single-layered plate,
K2 = 5/6 could be used as an exact shear correction factor.

Due to the expected accuracy of inter- and intra-laminae prediction response characteris-
tic, this theory could be successfully applied, for example, in the assessment of the damage
response or of the failure predictions of postbuckled composite plates. Certainly the theory
of plates developed here could be further refined by fulfilling the static conditions on the top
and bottom faces of the plate and/or by introducing the effect of delaminations. While the
former refinement as revealed in papers [32, 33] does not result in an increase of the order of
government equations but only in their intricacy, the implementation of the latter one will
yields extra-complexities in the analytical treatment.

Last but not least, the numerical results and the comparison of the predictions based on
such a structural model with their counterparts based on the 3-D elasticity theory reveal the
excellent performances of this model. It is hoped that the present developments as well as
the ones done in [35-39] will enable one further applications in which their features would
be essential for a reliable prediction of the failure and damage response of advanced
composite structures and of a number of local phenomena related to their behavior.

Nomenclature

a, a
a, a

i

( 1B~P (,k)B 
3
.
3

n B ,0

Ej

n n
Fe, F3

(k)ja (k)r3

Fijkl .

gi, g
gii, gI
h, h (k)

H, H'

I, 13
K

Las
(k)j, (k)joB

(k)/

n

Up", p3

pij
RB
5'

covariant and contravariant base vectors of the reference plane
covariant and contravariant metric tensor components of the reference plane
rigidities of the kth layer (of the nth and 0th order, respectively)
Green-Lagrange strain tensor components
2-D strain measures obtained as nth term of the expansion of Eq
tensors of elastic moduli

2-D nth order gross body couples

nth order body couples of the kth layer
elastic compliance tensor
3-D covariant and contravariant base vector
3-D covariant and contravariant metric tensor components
total plate thickness; thickness of the kth lamina

body force vector and its components

2-D nth order gross inertia couples
kinetic energy
transverse shear correction factor (equation (27c))
2-D nth order gross stress resultants
2-D nth order stress results of the kth layer

nth order mass term of the kth layer
unit normal vector to the reference plane
2-D nth order surface load couples
first Piola-Kirchhoff stress tensor
equation (24e)
prescribed stress vector components
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second Piola-Kirchhoff stress tensor
time
3-D temperature field
2-D thermal stress resultants
displacement vector and its components in 3-D space
displacement components of the kth layer
displacement components of the reference plane

nth order acceleration quantity (equation (18))
convective surface and normal coordinates
Heaviside function
values of X3 at the mid-plane, at the upper and bottom faces of the kth layer, respectively.
measure of the difference of transverse shear moduli between the (k + 1)th and kth layer
(equation (11))
thermal expansion coefficients
unit outward normal vector to the boundary and its components
2-D functions intervening in the displacement representation (equation (5))
mass density
unit tangent vector of the boundary and its components
rotation angles of the normal to the reference plane

partial derivative of A with respect to x"
covariant derivative of A with respect to x"
variation of A
prescribed quantity A
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